Hardness and advantages of Module-SIS and Module-LWE

Adeline Roux-Langlois

EMSEC: Univ Rennes, CNRS, IRISA

April 24, 2018

Adeline Roux-Langlois

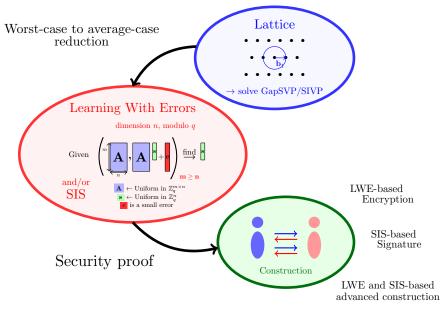
Hardness and advantages of Module-SIS and LWE

April 24, 2018 1/23

Introduction

- ▶ Lattice-based cryptography: why using module lattices?
- ▶ Definition of Module SIS and LWE
- ▶ Hardness results on Module SIS and LWE
- ▶ Conclusion and open problems

Lattice-based cryptography



Adeline Roux-Langlois

Lattice-based cryptography

From basic to very advanced primitives

- Public key encryption and Signature scheme (practical), [Regev 05, Gentry, Peikert and Vaikuntanathan 08, Lyubashevsky 12 ...];
- ► Identity/Attribute-based encryption, [GPV 08

Gorbunov, Vaikuntanathan and Wee 13 ...];

▶ Fully homomorphic encryption,

[Gentry 09, BV 11, ...].

Advantages

- ► (Asymptotically) efficient;
- ► Security proofs from the hardness of lattice problems;
- ▶ Likely to resist attacks from quantum computers.

NIST competition

From 2017 to 2024, NIST competition to find standard on post-quantum cryptography

Total: 69 accepted submissions (round 1)

- ▶ Signature (5 lattice-based),
- Public key encryption / Key exchange mechanism (21 lattice-based)

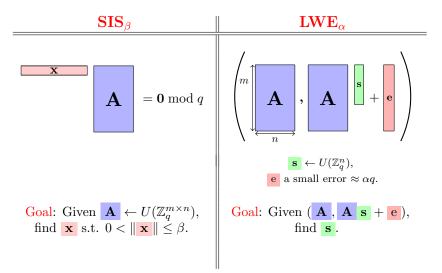
Other candidates: 17 code-based PKE/KEM, 7 multivariate signatures, 3 hash-based signatures, 7 from "other" assumptions (isogenies, PQ RSA ...) and 4 attacked + 5 withdrawn.

$\Rightarrow \textbf{lattice-based constructions seem to be serious candidates} \\ (Assumptions: NTRU, SIS/LWE/LWR, \\ Ring/Module-SIS/LWE/LWR, MP-LWE)$

Adeline Roux-Langlois

Foundamental problems to build cryptography

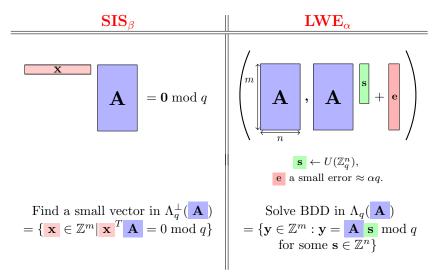
Parameters: dimension $n, m \ge n$, moduli q. For $\mathbf{A} \leftarrow U(\mathbb{Z}_q^{m \times n})$:



Adeline Roux-Langlois

Foundamental problems to build cryptography

Parameters: dimension $n, m \ge n$, moduli q. For $\mathbf{A} \leftarrow U(\mathbb{Z}_{a}^{m \times n})$:



Adeline Roux-Langlois

Hardness results

Worst-case to average-case reductions from lattice problems

- ▶ Hardness of the SIS problem [Ajtai 96, MR 04, GPV 08, ...]
- Hardness of the LWE problem [Regev 05, Peikert 09, BLPRS 13...]

Also in [BLPRS 13]

- ▶ Shrinking modulus / Expanding dimension: A reduction from $LWE_{q^k}^n$ to LWE_q^{nk} .
- Expanding modulus / Shrinking dimension: A reduction from LWE_q^n to $LWE_{q^k}^{n/k}$.

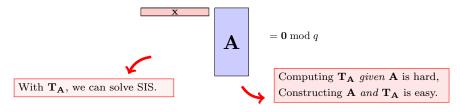
 \Rightarrow The hardness of LWE_q^n is a function of $n \log q$.

Adeline Roux-Langlois

Lattice-based signature scheme

Trapdoor for SIS

 \blacktriangleright TrapGen $\rightsquigarrow ({\bf A}, {\bf T_A})~$ such that ${\bf T_A}$ allows to find short ${\bf x}(\text{'s})$



- $\mathbf{T}_{\mathbf{A}}$ is a short basis of $\Lambda_q^{\perp}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{Z}^m | \mathbf{x}^T \mathbf{A} = 0 \mod q\}$
- ▶ In a public key scheme:
 - public key: A
 - secret key: T_A

Adeline Roux-Langlois

Hardness and advantages of Module-SIS and LWE April 24, 2018 8/23

Lattice-based signature scheme

Signature scheme

▶ Key generation:

$$\blacktriangleright pk = \mathbf{A}, (\mathbf{A}_i)_i$$

• $sk = T_A$

- To sign a message M:
 - use $\mathbf{T}_{\mathbf{A}}$ to solve SIS: find small \mathbf{x} such that $\mathbf{x}^T \mathbf{A}_M = \mathbf{0} \mod q$.
- To verify a signature \mathbf{x} given M:
 - check $\mathbf{x}^T \mathbf{A}_M = \mathbf{0} \mod q$ and \mathbf{x} small

where:

•
$$\mathbf{A}_M = \left[\frac{\mathbf{A}}{\mathbf{A}_0 + \sum_i M_i \mathbf{A}_i}\right]$$
 in [Boyen 10] for example,

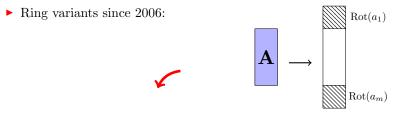
- Knowing a trapdoor for $\mathbf{A} \Rightarrow$ knowing a trapdoor for \mathbf{A}_M ,
- ▶ Several known constructions [Boyen 10, CHKP 10 ..]

Adeline Roux-Langlois

Hardness and advantages of Module-SIS and LWE April 24, 2018 9/ 23

From SIS/LWE to structured variants

- ▶ **Problem:** constructions based on SIS/LWE enjoy a nice guaranty of security but are too costly in practice.
- \rightarrow replace \mathbb{Z}^n by a Ring, for example $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$ $(n = 2^k)$.



- Structured $\mathbf{A} \in \mathbb{Z}_q^{m \cdot n \times n}$ represented by $m \cdot n$ elements,
- Product with matrix/vector more efficient,
- ► Hardness of Ring-SIS, [Lyubashevs]

[Lyubashevsky and Micciancio 06] and [Peikert and Rosen 06]

► Hardness of Ring-LWE

[Lyubashevsky, Peikert and Regev 10].

Adeline Roux-Langlois

Hardness and advantages of Module-SIS and LWE April 24, 2018 10/23

Ring-SIS based signature scheme [BFRS 18]

Underlying to [ABB10]

- $\blacktriangleright \; \texttt{KeyGen}(\lambda) \to (vk, sk)$
 - choose uniform $\mathbf{a}' \in R_q^{m-2}$
 - $sk = T \in R^{(m-2) \times 2}$ gaussian
 - pk= $\mathbf{a} = \left(\mathbf{a}^{T} | \mathbf{a}^{T} \mathbf{T}\right)^{T}$

For M: $\mathbf{a}_M = \left(\mathbf{a}^{T} | H(M)\mathbf{g} - \mathbf{a}^{T}\mathbf{T}\right)^T$ -

- ▶ Sign $(\mathbf{a}, \mathbf{T}, M) \rightarrow \mathbf{x}$
 - Using **T**, find small $\mathbf{x} \in R_q^m$ with $\mathbf{x}^T \mathbf{a}_M = 0$,
- $Verify(\mathbf{a}, \mathbf{x}, M) \rightarrow \{0, 1\}$
 - Accept iff $\mathbf{x}^T \mathbf{a}_M = 0 \mod qR$ and $\|\mathbf{x}\|$ small.

 $\begin{array}{l} \mbox{Discrete Gaussian} \Rightarrow \\ \mbox{short elements in } R \end{array}$

MP12 Trapdoors: – **a** looks uniform, – **T** trapdoor (allows to solve Ring-SIS)

> **g** gadget vector $H: \{0,1\}^n \to R_q$

> > 11/23

Adeline Roux-Langlois

Hardness and advantages of Module-SIS and LWE April 24, 2018

Implementing such a scheme

Lot of conditions on parameters: hardness of Ring-SIS, correctness ... How to be efficient ?

- ▶ Preimage sampling [MP 12, GM 18],
- ► Fast multiplication of ring elements in $R_q = \mathbb{Z}_q / \langle x^n + 1 \rangle$

For example: use the NFLlib library [Aguilar et al. 16]

• Two important conditions: $n = 2^k$ and $q = 1 \mod 2n$

 $x^n + 1$ splits completely into linear factors

 \Rightarrow 3 main constraints on $q = \prod q_i$ described to use the NTT

Example of parameters

n	$\log q$	σ	R-LWE _{σ}	δ	R-SIS	λ
512	30	4.2	2^{64}	1.011380	2^{74}	60
1024	24	5.8	2^{378}	1.008012	2^{156}	140
1024	30	6.3	2^{246}	1.007348	2^{184}	170

Table: Parameters set for the signature scheme

 \rightarrow Gap in security because of the constraints on the parameter.

Module variants \Rightarrow tradeoff between security and efficiency

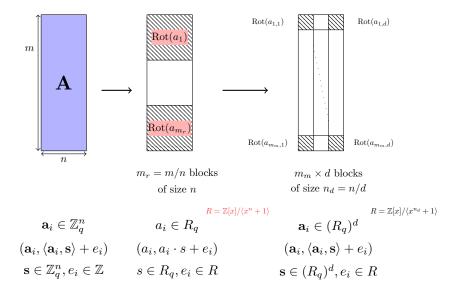
- ▶ Hardness of Module SIS and LWE [LS15,AD17]
- ▶ Dilithium & Kyber Crystals NIST submissions [Avanzi et al.]

▶ Lattice-based cryptography: why using module lattices?

▶ Definition of Module SIS and LWE

- ▶ Hardness results on Module variants
- ▶ Conclusion and open problems

Module variants



Adeline Roux-Langlois

Hardness and advantages of Module-SIS and LWE April 24, 2018 15/23

Module SIS and LWE

For example in: $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$ and $R_q = R/qR$.

Module-SIS $_{q,m,\beta}$

Given $\mathbf{a}_1, \ldots, \mathbf{a}_m \in R_q^d$ independent and uniform, find $z_1, \ldots, z_m \in R$ such that $\sum_{i=1}^m \mathbf{a}_i \cdot z_i = 0 \mod q$ and $0 < \|\mathbf{z}\| \le \beta$.

Let $\alpha > 0$ and $\mathbf{s} \in (R_q)^d$, the distribution $A_{\mathbf{s},\nu_{\alpha}}^{(M)}$ is:

- ▶ $\mathbf{a} \in (R_q)^d$ uniform,
- e sampled from \mathcal{D}_{α} ,

Outputs: $\left(\mathbf{a}, \frac{1}{q} \langle \mathbf{a}, \mathbf{s} \rangle + e\right)$.

Module-LWE_{q,ν_{α}}

let $\mathbf{s} \in (R_q)^d$ uniform, distinguish between an arbitrary number of samples from $A_{\mathbf{s},D_\alpha}^{(M)}$, or the same number from $U((R_q)^d \times \mathbb{T}_R)$.

$$A_{\mathbf{s},D_{\alpha}}^{(M)} \approx_{c} U((R_q)^d \times \mathbb{T}_R).$$

Adeline Roux-Langlois

Hardness and advantages of Module-SIS and LWE April 24, 2018 16/23

From Ring-SIS/LWE to Module-SIS/LWE

SIS

- Ring-SIS-instance: $a_1, \ldots, a_m \in R_q$,
- ▶ For $2 \le i \le d$, $1 \le j \le m$: sample $a_{i,j}$, $\mathbf{a}_j = (a_j, a_{2,j}, \dots, a_{d,j})$,
- Module-SIS: gives small \mathbf{z} such that $\sum_j \mathbf{a}_j \cdot z_j = 0$ $\Rightarrow \sum_j a_j \cdot z_j = 0$

LWE

- Ring-LWE instance: $(a, b = a \cdot s + e)$,
- Sample a_2, \ldots, a_d and s_2, \ldots, s_d ,
- New sample: $(\mathbf{a} = (a, a_2, \dots, a_d), b + \sum_{i=2}^d a_i \cdot s_i).$
 - ▶ $\mathbf{s} = (s, s_1, \dots, s_d) \in (R_q)^d$, ▶ then $b + \sum_{i=2}^d a_i \cdot s_i = \langle \mathbf{a}, \mathbf{s} \rangle + e \Rightarrow$ Module-LWE instance

 $\begin{array}{l} \text{Module-SIS/LWE}_{n,d,q} \text{ at least as hard as Ring-SIS/LWE}_{n,q} \\ \Rightarrow \text{Module-SIS/LWE}_{n,d,q} \text{ at least as hard as Ideal-SIVP}_n \end{array}$

Adeline Roux-Langlois

Hardness and advantages of Module-SIS and LWE April 24, 2018 17/23

- ▶ Lattice-based cryptography: why using module lattices?
- ▶ Definition of Module SIS and LWE
- ▶ Hardness results on Module variants
- ▶ Conclusion and open problems

Ideal and Module SIVP

Shortest Independent Vector problem $(SIVP_{\gamma})$

Input: a basis **B** of a lattice, Output: find $n = \dim(\mathcal{L}(\mathbf{B}))$ linearly independent \mathbf{s}_i such that $\max_i \|\mathbf{s}_i\| \le \gamma \cdot \lambda_n(\mathcal{L}(\mathbf{B})).$

Ideal-SIVP problem restricted to ideal lattices. Module-SIVP problem restricted to module lattices.

Let K be a number field, R its ring of integers,

- Let σ be an embedding from K to \mathbb{R}^n , $\sigma(I)$ is an ideal lattice where I is an ideal of R,
- ► Let $(\sigma, ..., \sigma)$ be an embedding from K^d to $\mathbb{R}^{n_d \cdot d}$, $\sigma(M)$ is a module lattice where $M \subseteq K^d$ is a module of R. $\rightarrow M$ can be represented by a pseudo basis: $M = \sum_k I_k \cdot b_k$, where (I_k) non zero ideals of R, (b_k) linearly indep. vectors of R^d .

Hardness Results

Langlois Stehlé 2015

- ▶ Reduction from Module-SIVP to Module-SIS.
- ▶ Quantum reduction from Module-SIVP to Module-LWE.
- ▶ Reduction from search to decision Module-LWE.

Parameters:

Module-SIVP	$SIVP \rightarrow LWE$	Ideal-SIVP
\rightarrow Module-LWE		\rightarrow Ring-LWE
$[LS \ 15]$	[Regev 05]	[LPR 10]
$d\;,n_d$	$d = n ext{ et } n_d = 1$	$d = 1$ et $n_d = n$
$\gamma\gtrsim \sqrt{n_d}\cdot d/lpha$	$\gamma\gtrsim n/lpha$	$\gamma\gtrsim \sqrt{n}/lpha$
arbitrary q	q prime	q prime
		$q = 1 \mod 2n$
$q\gtrsim \sqrt{d}/lpha$	$q\gtrsim \sqrt{n}/lpha$	$q\gtrsim 1/lpha$

Adeline Roux-Langlois

Hardness Results

Langlois Stehlé 2015

- ▶ Reduction from Module-SIVP to Module-SIS.
- ▶ Quantum reduction from Module-SIVP to Module-LWE.
- ▶ Reduction from search to decision Module-LWE.

Converse reductions

- For $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$ with $n = 2^k$,
- ▶ Reduction from Module-SIS to Module-SIVP,
- ▶ Reduction from Module-LWE to Module-SIVP.

Hardness Results

Albrecht Deo 2017

- \blacktriangleright R is a power-of-two cyclotomic ring: the same for both problems,
- Reduction

```
from Module-LWEin rank d<br/>with modulus q,to Module-LWEin rank d/k<br/>with modulus q^k.
```

- ▶ If $k = d \Rightarrow$ Reduction from (search) Module-LWE with rank d and modulus q to (search) Ring-LWE with modulus q^d .
- \rightarrow with error rate expansion: from α to $\alpha \cdot n^2 \sqrt{d}$.

Hardness results

Consequences [LS15] + [AD17]

 $\operatorname{Module-SIVP}_{\gamma} \longleftrightarrow \operatorname{Module-LWE}_{d,q,\alpha} \longrightarrow \operatorname{Ring-LWE}_{q^{d},\alpha'}$

$$\boldsymbol{\alpha}' = \boldsymbol{\alpha} \cdot n^2 \sqrt{d},$$
$$\boldsymbol{\gamma} = O(\frac{n^{5/2} \cdot d^{3/2}}{\alpha'})$$

Interpretation

- [BLPRS 13]: Ring-LWE in dimension n with exponential modulus is hard under hardness of general lattices problems.
- [LS15] + [AD17]: Ring-LWE in dimension n with exponential modulus is hard under hardness of module lattices problems.
- \blacktriangleright Cryptanalysis observation: Ring-LWE becomes harder when q increases.

- ▶ Lattice-based cryptography: why using module lattices?
- ▶ Definition of Module SIS and LWE
- ▶ Hardness results on Module variants
- ▶ Conclusion and open problems

Open problems

Conclusion

- Module problems hard and interesting to build cryptographic constructions, serious NIST submissions:
 - Dilithium (signature MSIS/MLWE): n = 256, m, d = 3, 4.
 - ► Kyber (KEM MLWE)
 - Saber / 3-bears (KEM MLWR)

Open problems

- ▶ Hardness of Module Learning With Rounding
 - ▶ Problem used in several NIST submission,
- ▶ A better understanding of Ring-LWE / Module-LWE
- ▶ A better understanding of SIVP on module lattices